Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38594044

RESUMO

Synthetic antibody libraries have been used extensively to isolate and optimize antibodies. To generate these libraries, the immunological diversity and the antibody framework(s) that supports it outside of the binding regions are carefully designed/chosen to ensure favorable functional and biophysical properties. In particular, minimalist, single-framework synthetic libraries pioneered by our group have yielded a vast trove of antibodies to a broad array of antigens. Here, we review their systematic and iterative development to provide insights into the design principles that make them a powerful tool for drug discovery. In addition, the ongoing accumulation of crystal structures of antigen-binding fragment (Fab)-antigen complexes generated with synthetic antibodies enables a deepening understanding of the structural determinants of antigen recognition and usage of immunoglobulin sequence diversity, which can assist in developing new strategies for antibody and library optimization. Toward this, we also survey here the structural landscape of a comprehensive and unbiased set of 50 distinct complexes derived from these libraries and compare it to a similar set of natural antibodies with the goal of better understanding how each achieves molecular recognition and whether opportunities exist for iterative improvement of synthetic libraries. From this survey, we conclude that despite the minimalist strategies used for design of these synthetic antibody libraries, the overall structural interaction landscapes are highly similar to natural repertoires. We also found, however, some key differences that can help guide the iterative design of new synthetic libraries via the introduction of positionally tailored diversity.

2.
Development ; 151(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358799

RESUMO

The Wnt/ß-catenin signaling governs anterior-posterior neural patterning during development. Current human pluripotent stem cell (hPSC) differentiation protocols use a GSK3 inhibitor to activate Wnt signaling to promote posterior neural fate specification. However, GSK3 is a pleiotropic kinase involved in multiple signaling pathways and, as GSK3 inhibition occurs downstream in the signaling cascade, it bypasses potential opportunities for achieving specificity or regulation at the receptor level. Additionally, the specific roles of individual FZD receptors in anterior-posterior patterning are poorly understood. Here, we have characterized the cell surface expression of FZD receptors in neural progenitor cells with different regional identity. Our data reveal unique upregulation of FZD5 expression in anterior neural progenitors, and this expression is downregulated as cells adopt a posterior fate. This spatial regulation of FZD expression constitutes a previously unreported regulatory mechanism that adjusts the levels of ß-catenin signaling along the anterior-posterior axis and possibly contributes to midbrain-hindbrain boundary formation. Stimulation of Wnt/ß-catenin signaling in hPSCs, using a tetravalent antibody that selectively triggers FZD5 and LRP6 clustering, leads to midbrain progenitor differentiation and gives rise to functional dopaminergic neurons in vitro and in vivo.


Assuntos
Receptores Frizzled , Quinase 3 da Glicogênio Sintase , beta Catenina , Humanos , beta Catenina/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Mesencéfalo , Sistema Nervoso/metabolismo , Via de Sinalização Wnt , Animais , Ratos
3.
Protein Sci ; 33(1): e4824, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37945533

RESUMO

The atomic-resolution structural information that X-ray crystallography can provide on the binding interface between a Fab and its cognate antigen is highly valuable for understanding the mechanism of interaction. However, many Fab:antigen complexes are recalcitrant to crystallization, making the endeavor a considerable effort with no guarantee of success. Consequently, there have been significant steps taken to increase the likelihood of Fab:antigen complex crystallization by altering the Fab framework. In this investigation, we applied the surface entropy reduction strategy coupled with phage-display technology to identify a set of surface substitutions that improve the propensity of a human Fab framework to crystallize. In addition, we showed that combining these surface substitutions with previously reported Crystal Kappa and elbow substitutions results in an extraordinary improvement in Fab and Fab:antigen complex crystallizability, revealing a strong synergistic relationship between these sets of substitutions. Through comprehensive Fab and Fab:antigen complex crystallization screenings followed by structure determination and analysis, we defined the roles that each of these substitutions play in facilitating crystallization and how they complement each other in the process.


Assuntos
Complexo Antígeno-Anticorpo , Fragmentos Fab das Imunoglobulinas , Humanos , Cristalização/métodos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/química , Complexo Antígeno-Anticorpo/química , Antígenos/química , Cristalografia por Raios X , Conformação Proteica
4.
Protein Sci ; 33(2): e4885, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147466

RESUMO

Smurf1 and Smurf2 are two closely related member of the HECT (homologous to E6AP carboxy terminus) E3 ubiquitin ligase family and play important roles in the regulation of various cellular processes. Both were initially identified to regulate transforming growth factor-ß and bone morphogenetic protein signaling pathways through regulating Smad protein stability and are now implicated in various pathological processes. Generally, E3 ligases, of which over 800 exist in humans, are ideal targets for inhibition as they determine substrate specificity; however, there are few inhibitors with the ability to precisely target a particular E3 ligase of interest. In this work, we explored a panel of ubiquitin variants (UbVs) that were previously identified to bind Smurf1 or Smurf2. In vitro binding and ubiquitination assays identified a highly specific Smurf2 inhibitor, UbV S2.4, which was able to inhibit ligase activity with high potency in the low nanomolar range. Orthologous cellular assays further demonstrated high specificity of UbV S2.4 toward Smurf2 and no cross-reactivity toward Smurf1. Structural analysis of UbV S2.4 in complex with Smurf2 revealed its mechanism of inhibition was through targeting the E2 binding site. In summary, we investigated several protein-based inhibitors of Smurf1 and Smurf2 and identified a highly specific Smurf2 inhibitor that disrupts the E2-E3 protein interaction interface.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Sítios de Ligação
6.
Stem Cell Res Ther ; 14(1): 318, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932852

RESUMO

BACKGROUND: Immunologically impaired individuals respond poorly to vaccines, highlighting the need for additional strategies to protect these vulnerable populations from COVID-19. While monoclonal antibodies (mAbs) have emerged as promising tools to manage infectious diseases, the transient lifespan of neutralizing mAbs in patients limits their ability to confer lasting, passive prophylaxis from SARS-CoV-2. Here, we attempted to solve this problem by combining cell and mAb engineering in a way that provides durable immune protection against viral infection using safe and universal cell therapy. METHODS: Mouse embryonic stem cells equipped with our FailSafe™ and induced allogeneic cell tolerance technologies were engineered to express factors that potently neutralize SARS-CoV-2, which we call 'neutralizing biologics' (nBios). We subcutaneously transplanted the transgenic cells into mice and longitudinally assessed the ability of the cells to deliver nBios into circulation. To do so, we quantified plasma nBio concentrations and SARS-CoV-2 neutralizing activity over time in transplant recipients. Finally, using similar cell engineering strategies, we genetically modified FailSafe™ human-induced pluripotent stem cells to express SARS-CoV-2 nBios. RESULTS: Transgenic mouse embryonic stem cells engineered for safety and allogeneic-acceptance can secrete functional and potent SARS-CoV-2 nBios. As a dormant, subcutaneous tissue, the transgenic cells and their differentiated derivatives long-term deliver a supply of protective nBio titers in vivo. Moving toward clinical relevance, we also show that human-induced pluripotent stem cells, similarly engineered for safety, can secrete highly potent nBios. CONCLUSIONS: Together, these findings show the promise and potential of using 'off-the-shelf' cell products that secrete neutralizing antibodies for sustained protective immunity against current and future viral pathogens of public health significance.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , SARS-CoV-2 , Anticorpos Antivirais , Anticorpos Neutralizantes , Imunização Passiva , Anticorpos Monoclonais
7.
Cell Rep ; 42(11): 113354, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37917586

RESUMO

The study of fallopian tube (FT) function in health and disease has been hampered by limited knowledge of FT stem cells and lack of in vitro models of stem cell renewal and differentiation. Using optimized organoid culture conditions to address these limitations, we find that FT stem cell renewal is highly dependent on WNT/ß-catenin signaling and engineer endogenous WNT/ß-catenin signaling reporter organoids to biomark, isolate, and characterize these cells. Using functional approaches, as well as bulk and single-cell transcriptomics analyses, we show that an endogenous hormonally regulated WNT7A-FZD5 signaling axis is critical for stem cell renewal and that WNT/ß-catenin pathway-activated cells form a distinct transcriptomic cluster of FT cells enriched in extracellular matrix (ECM) remodeling and integrin signaling pathways. Overall, we provide a deep characterization of FT stem cells and their molecular requirements for self-renewal, paving the way for mechanistic work investigating the role of stem cells in FT health and disease.


Assuntos
Tubas Uterinas , beta Catenina , Feminino , Humanos , beta Catenina/metabolismo , Tubas Uterinas/metabolismo , Transcriptoma/genética , Células-Tronco/metabolismo , Via de Sinalização Wnt , Organoides/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Receptores Frizzled/metabolismo
8.
Nat Cancer ; 4(11): 1592-1609, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37904046

RESUMO

Safely expanding indications for cellular therapies has been challenging given a lack of highly cancer-specific surface markers. Here we explore the hypothesis that tumor cells express cancer-specific surface protein conformations that are invisible to standard target discovery pipelines evaluating gene or protein expression, and these conformations can be identified and immunotherapeutically targeted. We term this strategy integrating cross-linking mass spectrometry with glycoprotein surface capture 'structural surfaceomics'. As a proof of principle, we apply this technology to acute myeloid leukemia (AML), a hematologic malignancy with dismal outcomes and no known optimal immunotherapy target. We identify the activated conformation of integrin ß2 as a structurally defined, widely expressed AML-specific target. We develop and characterize recombinant antibodies to this protein conformation and show that chimeric antigen receptor T cells eliminate AML cells and patient-derived xenografts without notable toxicity toward normal hematopoietic cells. Our findings validate an AML conformation-specific target antigen and demonstrate a tool kit for applying these strategies more broadly.


Assuntos
Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Integrinas/metabolismo , Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/genética
9.
Methods Mol Biol ; 2702: 59-75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679615

RESUMO

Synthetic antibody libraries provide a vast resource of renewable antibody reagents that can rival natural antibodies and be rapidly isolated through controlled in vitro selections. Use of highly optimized human frameworks enables the incorporation of defined diversity at positions that are most likely to contribute to antigen recognition. This protocol describes the construction of synthetic antibody libraries based on a single engineered human autonomous variable heavy domain scaffold with diversity in all three complementarity-determining regions. The resulting libraries can be used to generate recombinant domain antibodies targeting a wide range of protein antigens using phage display. Furthermore, analogous methods can be used to construct antibody libraries based on larger antibody fragments or second-generation libraries aimed to fine-tune antibody characteristics including affinity, specificity, and manufacturability. The procedures rely on standard reagents and equipment available in most molecular biology laboratories.


Assuntos
Anticorpos , Bacteriófagos , Humanos , Anticorpos/genética , Regiões Determinantes de Complementaridade , Fragmentos de Imunoglobulinas , Técnicas de Visualização da Superfície Celular
10.
Methods Mol Biol ; 2705: 307-348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37668982

RESUMO

The Src Homology 2 (SH2) domain is an emerging biotechnology with applications in basic science, drug discovery, and even diagnostics. The SH2 domains rapid uptake into different areas of research is a direct result of the wealth of information generated on its biochemical, biological, and biophysical role in mammalian cell biology. Functionally, the SH2 domain binds and recognizes specific phosphotyrosine (pTyr) residues in the cell to mediate protein-protein interactions (PPIs) that govern signal transduction networks. These signal transduction networks are responsible for relaying growth and stress state signals to the cell's nucleus, ultimately effecting a change in cell biology. Protein engineers have been able to increase the affinity of SH2 domains for pTyr while also tailoring the domains' specificity to unique amino acid sequences flanking the pTyr residue. In this way, it has been possible to develop unique SH2 variants for use in affinity-purification coupled to mass spectrometry (AP-MS) experiments, microscopy, or even synthetic biology. This chapter outlines methods to tailor the affinity and specificity of virtually any human SH2 domain using a combination of rational engineering and phage-display approaches.


Assuntos
Biotecnologia , Domínios de Homologia de src , Humanos , Animais , Sequência de Aminoácidos , Transporte Biológico , Biofísica , Fosfotirosina , Mamíferos
11.
Nat Chem Biol ; 19(12): 1513-1523, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37653169

RESUMO

The cullin-RING ubiquitin ligase (CRL) network comprises over 300 unique complexes that switch from inactive to activated conformations upon site-specific cullin modification by the ubiquitin-like protein NEDD8. Assessing cellular repertoires of activated CRL complexes is critical for understanding eukaryotic regulation. However, probes surveying networks controlled by site-specific ubiquitin-like protein modifications are lacking. We developed a synthetic antibody recognizing the active conformation of NEDD8-linked cullins. Implementing the probe to profile cellular networks of activated CUL1-, CUL2-, CUL3- and CUL4-containing E3s revealed the complexes responding to stimuli. Profiling several cell types showed their baseline neddylated CRL repertoires vary, and prime efficiency of targeted protein degradation. Our probe also unveiled differential rewiring of CRL networks across distinct primary cell activation pathways. Thus, conformation-specific probes can permit nonenzymatic activity-based profiling across a system of numerous multiprotein complexes, which in the case of neddylated CRLs reveals widespread regulation and could facilitate the development of degrader drugs.


Assuntos
Proteínas Culina , Ubiquitina-Proteína Ligases , Proteínas Culina/genética , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Proteína NEDD8/metabolismo
12.
Cell ; 186(14): 2995-3012.e15, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37321220

RESUMO

Wnt ligands oligomerize Frizzled (Fzd) and Lrp5/6 receptors to control the specification and activity of stem cells in many species. How Wnt signaling is selectively activated in different stem cell populations, often within the same organ, is not understood. In lung alveoli, we show that distinct Wnt receptors are expressed by epithelial (Fzd5/6), endothelial (Fzd4), and stromal (Fzd1) cells. Fzd5 is uniquely required for alveolar epithelial stem cell activity, whereas fibroblasts utilize distinct Fzd receptors. Using an expanded repertoire of Fzd-Lrp agonists, we could activate canonical Wnt signaling in alveolar epithelial stem cells via either Fzd5 or, unexpectedly, non-canonical Fzd6. A Fzd5 agonist (Fzd5ag) or Fzd6ag stimulated alveolar epithelial stem cell activity and promoted survival in mice after lung injury, but only Fzd6ag promoted an alveolar fate in airway-derived progenitors. Therefore, we identify a potential strategy for promoting regeneration without exacerbating fibrosis during lung injury.


Assuntos
Lesão Pulmonar , Camundongos , Animais , Proteínas Wnt , Receptores Frizzled , Via de Sinalização Wnt , Células Epiteliais Alveolares , Células-Tronco
13.
Artigo em Inglês | MEDLINE | ID: mdl-37295821

RESUMO

Synthetic antibody libraries enable the development of antibodies that can recognize virtually any antigen, with affinity and specificity profiles that are superior to those of natural antibodies. By using highly stable and optimized frameworks, synthetic antibody libraries can be rapidly generated by precisely designing synthetic DNA, allowing absolute control over the position and chemical diversity introduced while expanding the sequence space for antigen recognition. Here, we describe a detailed protocol for the generation of highly diverse synthetic antibody phage display libraries based on a single framework, with diversity genetically incorporated by using finely designed mutagenic oligonucleotides. This general method enables the facile construction of large antibody libraries with precisely tunable features, resulting in the rapid development of recombinant antibodies for virtually any antigen.

14.
Artigo em Inglês | MEDLINE | ID: mdl-37295822

RESUMO

Synthetic antibody libraries, in which the antigen-binding sites are precisely designed, offer unparalleled precision in antibody engineering, exceeding the potential of natural immune repertoires and constituting a novel generation of research tools and therapeutics. Recent advances in artificial intelligence-driven technologies and their integration into synthetic antibody discovery campaigns hold the promise to further streamline and effectively develop antibodies. Here, we provide an overview of synthetic antibodies. Our associated protocol describes how to develop highly diverse and functional synthetic antibody phage display libraries.

15.
Heliyon ; 9(3): e14673, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37020941

RESUMO

The currently available nebulization devices have a slow aerosol flow and produce vapor with large microdrops. Improved devices that achieve higher airflow and produce smaller microdrops are needed to improve the clinical care of patients. To address this critical need, we developed a novel system for the molecular vaporization of liquids. This device vaporizes an active pharmacological substance dissolved in water, alcohol, or a mixture of water and alcohol using two energy sources at the same time: high-frequency ultrasound and thermal induction. Application of energy to a solution contained in the device's tank allows, within tens of seconds, for the vaporization of the solution itself, with the generation of a vapor consisting of microdrops of very small diameter (0.2-0.3 µm). In this article, we illustrate the technology used, the main verification tests performed, and the primary fields of application for this device. In particular, the advantages of both the aerosol delivery system and the administration system are highlighted.

16.
bioRxiv ; 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36711970

RESUMO

The cullin-RING E3 ligase (CRL) network comprises over 300 unique complexes that switch from inactive to activated conformations upon site-specific cullin modification by the ubiquitin-like protein NEDD8. Assessing cellular repertoires of activated CRL complexes is critical for understanding eukaryotic regulation. However, probes surveying networks controlled by site-specific ubiquitin-like protein modifications are lacking. We report development of a synthetic antibody recognizing the active conformation of a NEDD8-linked cullin. We established a pipeline probing cellular networks of activated CUL1-, CUL2-, CUL3- and CUL4-containing CRLs, revealing the CRL complexes responding to stimuli. Profiling several cell types showed their baseline neddylated CRL repertoires vary, prime efficiency of targeted protein degradation, and are differentially rewired across distinct primary cell activation pathways. Thus, conformation-specific probes can permit nonenzymatic activity-based profiling across a system of numerous multiprotein complexes, which in the case of neddylated CRLs reveals widespread regulation and could facilitate development of degrader drugs.

17.
Elife ; 112022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459484

RESUMO

The development of haematopoietic stem cells into mature erythrocytes - erythropoiesis - is a controlled process characterized by cellular reorganization and drastic reshaping of the proteome landscape. Failure of ordered erythropoiesis is associated with anaemias and haematological malignancies. Although the ubiquitin system is a known crucial post-translational regulator in erythropoiesis, how the erythrocyte is reshaped by the ubiquitin system is poorly understood. By measuring the proteomic landscape of in vitro human erythropoiesis models, we found dynamic differential expression of subunits of the CTLH E3 ubiquitin ligase complex that formed maturation stage-dependent assemblies of topologically homologous RANBP9- and RANBP10-CTLH complexes. Moreover, protein abundance of CTLH's cognate E2 ubiquitin conjugating enzyme UBE2H increased during terminal differentiation, and UBE2H expression depended on catalytically active CTLH E3 complexes. CRISPR-Cas9-mediated inactivation of CTLH E3 assemblies or UBE2H in erythroid progenitors revealed defects, including spontaneous and accelerated erythroid maturation as well as inefficient enucleation. Thus, we propose that dynamic maturation stage-specific changes of UBE2H-CTLH E2-E3 modules control the orderly progression of human erythropoiesis.


Assuntos
Eritropoese , Proteômica , Humanos , Eritrócitos , Proteoma , Ubiquitina , Enzimas de Conjugação de Ubiquitina/genética , Proteínas Associadas aos Microtúbulos , Fatores de Troca do Nucleotídeo Guanina
18.
PLoS Pathog ; 18(12): e1011065, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36548304

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has made it clear that combating coronavirus outbreaks benefits from a combination of vaccines and therapeutics. A promising drug target common to all coronaviruses-including SARS-CoV, MERS-CoV, and SARS-CoV-2-is the papain-like protease (PLpro). PLpro cleaves part of the viral replicase polyproteins into non-structural protein subunits, which are essential to the viral replication cycle. Additionally, PLpro can cleave both ubiquitin and the ubiquitin-like protein ISG15 from host cell substrates as a mechanism to evade innate immune responses during infection. These roles make PLpro an attractive antiviral drug target. Here we demonstrate that ubiquitin variants (UbVs) can be selected from a phage-displayed library and used to specifically and potently block SARS-CoV-2 PLpro activity. A crystal structure of SARS-CoV-2 PLpro in complex with a representative UbV reveals a dimeric UbV bound to PLpro at a site distal to the catalytic site. Yet, the UbV inhibits the essential cleavage activities of the protease in vitro and in cells, and it reduces viral replication in cell culture by almost five orders of magnitude.


Assuntos
COVID-19 , Ubiquitina , Humanos , Ubiquitina/metabolismo , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/metabolismo , Domínio Catalítico , Papaína/química , Papaína/metabolismo , Replicação Viral
19.
Cell Rep Med ; 3(10): 100754, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36220068

RESUMO

The conclusive identity of Wnts regulating liver zonation (LZ) and regeneration (LR) remains unclear despite an undisputed role of ß-catenin. Using single-cell analysis, we identified a conserved Wnt2 and Wnt9b expression in endothelial cells (ECs) in zone 3. EC-elimination of Wnt2 and Wnt9b led to both loss of ß-catenin targets in zone 3, and re-appearance of zone 1 genes in zone 3, unraveling dynamicity in the LZ process. Impaired LR observed in the knockouts phenocopied models of defective hepatic Wnt signaling. Administration of a tetravalent antibody to activate Wnt signaling rescued LZ and LR in the knockouts and induced zone 3 gene expression and LR in controls. Administration of the agonist also promoted LR in acetaminophen overdose acute liver failure (ALF) fulfilling an unmet clinical need. Overall, we report an unequivocal role of EC-Wnt2 and Wnt9b in LZ and LR and show the role of Wnt activators as regenerative therapy for ALF.


Assuntos
Hiperplasia Nodular Focal do Fígado , Regeneração Hepática , Humanos , Regeneração Hepática/genética , beta Catenina/genética , Células Endoteliais/metabolismo , Transcriptoma , Proteínas Wnt/genética , Acetaminofen/metabolismo , Hiperplasia Nodular Focal do Fígado/metabolismo , Proteína Wnt2/genética
20.
Data Brief ; 43: 108415, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35789908

RESUMO

SARS-CoV-2 pandemic opens up the curiosity of understanding the coronavirus. This demand for the development of the regent, which can be used for academic and therapeutic applications. The present data provide the biochemical characterization of synthetically developed monoclonal antibodies for the SARS-CoV-2 proteins. The antibodies from phage-displayed antibody libraries were selected with the SARS-CoV-2 proteins immobilized in microwell plates. The clones which bind to the antigen in Fab-phage ELISA were selected, and a two-point competitive phage ELISA was performed. Antibodies binding kinetic of IgGs for SARS-CoV2 proteins further carried with B.L.I. Systematic analysis of binding with different control proteins and purified SARS-CoV-2 ensured the robustness of the antibodies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...